Rising temperatures and climate change helped triggering the explosion of new reptile body plans and the rise of modern lineages in the distant past.
What are the long-term effects of climatic change on the evolution of life? This is a critical question given the fast pace of anthropogenic climate change and its unknown impacts into the future of the world’s biodiversity. Predicting the future of biodiversity can be extremely challenging, but fortunately the fossil record provides us with several important lessons from similar events that happened in deep geological time (see my previous discussions on this topic in this post from 2019). A good example comes from a series of climatic crises that spanned for nearly 60 million years between the Permian and Triassic periods (295 - 235 million years ago). Coupled with intense global warming, these led to two of the largest mass extinctions in the history of the planet: the end-Guadalupian (261 Mya) and the end-Permian (251.9 Mya) mass extinctions, which decimated 70% and 86% of all species in the plant respectively in just 9 million years apart from each other. Never before or since, life on Earth was at a greater risk of complete annihilation.
The environmental crises in question were triggered, among other factors, by massive releases of carbon dioxide and other greenhouse gases released by massive volcanic eruptions in what is today Siberia (unfortunately to us, at rates which are much lower at 1.5Gt C/yr compared to the 31Gt C/yr humans are currently releasing into the atmosphere!). The impact of these events on various organisms can provide key insights into how global warming and subsequent climate change impacted global biodiversity. However, these effects have been studied more extensively among marine ecosystems, whereas our understanding of their impact over large scales of time on terrestrial vertebrates has remained largely unknown.
In a study just published today in Science Advances, I led a team of colleagues -- Dr. Christian Kammerer Dr. Michael Caldwell (University of Alberta, Canada) and Dr. Stephanie E. Pierce (Harvard University)--investigating precisely the question of how such fast environmental shifts in the deep past impacted the evolution of a major group of terrestrial vertebrates—reptiles.
Nature Portfolio Ecology & Evolution Community
What are the long-term effects of climatic change on the evolution of life? This is a critical question given the fast pace of anthropogenic climate change and its unknown impacts into the future of the world’s biodiversity. Predicting the future of biodiversity can be extremely challenging, but fortunately the fossil record provides us with several important lessons from similar events that happened in deep geological time (see my previous discussions on this topic in this post from 2019). A good example comes from a series of climatic crises that spanned for nearly 60 million years between the Permian and Triassic periods (295 - 235 million years ago). Coupled with intense global warming, these led to two of the largest mass extinctions in the history of the planet: the end-Guadalupian (261 Mya) and the end-Permian (251.9 Mya) mass extinctions, which decimated 70% and 86% of all species in the plant respectively in just 9 million years apart from each other. Never before or since, life on Earth was at a greater risk of complete annihilation.
The environmental crises in question were triggered, among other factors, by massive releases of carbon dioxide and other greenhouse gases released by massive volcanic eruptions in what is today Siberia (unfortunately to us, at rates which are much lower at 1.5Gt C/yr compared to the 31Gt C/yr humans are currently releasing into the atmosphere!). The impact of these events on various organisms can provide key insights into how global warming and subsequent climate change impacted global biodiversity. However, these effects have been studied more extensively among marine ecosystems, whereas our understanding of their impact over large scales of time on terrestrial vertebrates has remained largely unknown.
In a study just published today in Science Advances, I led a team of colleagues -- Dr. Christian Kammerer Dr. Michael Caldwell (University of Alberta, Canada) and Dr. Stephanie E. Pierce (Harvard University)--investigating precisely the question of how such fast environmental shifts in the deep past impacted the evolution of a major group of terrestrial vertebrates—reptiles.
Nature Portfolio Ecology & Evolution Community