Birds are profoundly important animals. As predators, pollinators, seed dispersers, scavengers and ecosystem bioengineers, the world’s 11,000 species of birds play critical roles in the food chain and therefore the existence of animal life.
They have also shaped the advancement of human societies culturally, philosophically, artistically, economically and scientifically. Birds feature prominently in the history of painting, poetry, commerce and music.
Since they can easily escape from unsuitable habitats, birds are important “sentinel” animals: the number and diversity of species indicates environmental health. BirdLife International’s State of the World’s Birds Report for 2022 says that about half of all bird species are decreasing and more than one in eight of them are at risk of extinction.
Knowledge of bird biology and their place in ecosystems contributes to devising conservation efforts. Biology explains why animals behave the way they do and what threatens their survival.
One of the aspects of bird biology that has long interested scientists is their lungs. They are structurally very complex and functionally efficient. Their lungs are what allows birds to fly. Flying uses a huge amount of energy and some birds fly nonstop over very long distances or at very high altitudes where there is little oxygen.
Even after extensive study, questions about the bioengineering of the avian respiratory system have persisted. They relate to how the airways and blood vessels are shaped, arranged and connected, and how air flows around the lung.
To explore these aspects of the avian lung, my colleagues and I have used a variety of techniques. Three-dimensional (3-D) serial section computer reconstruction is one of them.
Using this technique showed us that the tiny structures (air- and blood capillaries) between which oxygen is exchanged are not the shape they were long thought to be. Because they are so small and so tightly entangled with each other, it wasn’t possible to see their shapes and connections clearly until we used 3-D reconstruction. We were then able to see what makes the bird lung so efficient at taking up the oxygen needed to release energy – key to survival.
3-D techniques shed light on what makes a bird's lungs so efficient
They have also shaped the advancement of human societies culturally, philosophically, artistically, economically and scientifically. Birds feature prominently in the history of painting, poetry, commerce and music.
Since they can easily escape from unsuitable habitats, birds are important “sentinel” animals: the number and diversity of species indicates environmental health. BirdLife International’s State of the World’s Birds Report for 2022 says that about half of all bird species are decreasing and more than one in eight of them are at risk of extinction.
Knowledge of bird biology and their place in ecosystems contributes to devising conservation efforts. Biology explains why animals behave the way they do and what threatens their survival.
One of the aspects of bird biology that has long interested scientists is their lungs. They are structurally very complex and functionally efficient. Their lungs are what allows birds to fly. Flying uses a huge amount of energy and some birds fly nonstop over very long distances or at very high altitudes where there is little oxygen.
Even after extensive study, questions about the bioengineering of the avian respiratory system have persisted. They relate to how the airways and blood vessels are shaped, arranged and connected, and how air flows around the lung.
To explore these aspects of the avian lung, my colleagues and I have used a variety of techniques. Three-dimensional (3-D) serial section computer reconstruction is one of them.
Using this technique showed us that the tiny structures (air- and blood capillaries) between which oxygen is exchanged are not the shape they were long thought to be. Because they are so small and so tightly entangled with each other, it wasn’t possible to see their shapes and connections clearly until we used 3-D reconstruction. We were then able to see what makes the bird lung so efficient at taking up the oxygen needed to release energy – key to survival.
3-D techniques shed light on what makes a bird's lungs so efficient